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Imaging tunable quantum Hall 
broken-symmetry orders in graphene

Alexis Coissard1,5, David Wander1,5, Hadrien Vignaud1, Adolfo G. Grushin1, Cécile Repellin2, 
Kenji Watanabe3, Takashi Taniguchi4, Frédéric Gay1, Clemens B. Winkelmann1, 
Hervé Courtois1, Hermann Sellier1 & Benjamin Sacépé1 ✉

When electrons populate a flat band their kinetic energy becomes negligible, forcing 
them to organize in exotic many-body states to minimize their Coulomb energy1–5. 
The zeroth Landau level of graphene under a magnetic field is a particularly 
interesting strongly interacting flat band because interelectron interactions are 
predicted to induce a rich variety of broken-symmetry states with distinct topological 
and lattice-scale orders6–11. Evidence for these states stems mostly from indirect 
transport experiments that suggest that broken-symmetry states are tunable by 
boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. 
However, confirming the existence of these ground states requires a direct 
visualization of their lattice-scale orders14. Here we image three distinct 
broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We 
explore the phase diagram by tuning the screening of the Coulomb interaction by a 
low- or high-dielectric-constant environment, and with a magnetic field. In the 
unscreened case, we find a Kekulé bond order, consistent with observations of an 
insulating state undergoing a magnetic-field driven Kosterlitz–Thouless transition15,16. 
Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low 
magnetic fields, and transits to a charge-density-wave order with partial sublattice 
polarization at higher magnetic fields. The Kekulé and charge-density-wave orders 
furthermore coexist with additional, secondary lattice-scale orders that enrich the 
phase diagram beyond current theory predictions6–10. This screening-induced 
tunability of broken-symmetry orders may prove valuable to uncover correlated 
phases of matter in other quantum materials.

Narrow electronic energy bands provide an opportunity to explore 
many-body quantum phases of matter. The vanishingly small kinetic 
energy in these narrow bands leaves electrons subjected to interaction 
effects alone, resulting in the emergence of a wealth of correlated, 
topological and broken-symmetry phases1–5. Nearly perfect flat bands 
naturally develop in two-dimensional electron systems under a perpen-
dicular magnetic field, B, as macroscopically degenerate Landau levels. 
There, the main consequence of Coulomb interaction is to generate 
incompressible—gapped—phases at half-integer filling of Landau lev-
els, by favouring a spin-polarized ground state, a phenomenon called 
quantum Hall ferromagnetism17.

In graphene, the additional valley degeneracy enriches the quantum 
Hall ferromagnetism with broken-symmetry states at every quarter 
filling6,11. A central challenge is to unveil the nature of the ground state 
of the gapped zeroth Landau level (zLL) at charge neutrality. Theory 
predicts a rich phase diagram of broken-symmetry states with differ-
ent topological properties7–10,18. Although all are SU(4) ferromagnets, 
their exact spin and valley polarization (Fig. 1c) depends on a delicate 

balance between Zeeman energy and valley-anisotropy terms emerg-
ing from the lattice-scale interactions. Furthermore, the zLL wave-
functions feature a simple structure in which each valley degree of 
freedom is locked to one of the graphene’s sublattices. This property 
isolates four possible broken-symmetry states with distinct sublat-
tice or spin orders: a valley-polarized charge-density wave (CDW), a 
valley-polarized Kekulé bond (KB) order, a canted antiferromagnet 
(CAF) and a spin-polarized ferromagnet (F). Among them, the F order 
is a quantum Hall topological insulator harbouring conducting heli-
cal edge states, whereas the others are insulators with gapped edge 
states19.

Experimentally, the main insights to distinguish different broken- 
symmetry states come from transport measurements. High-mobility 
graphene typically shows an unequivocal insulating behaviour at charge 
neutrality on increasing the perpendicular magnetic field11,15,16,20,21. 
However, a strong in-plane magnetic field that boosts the Zeeman 
effect and the ensuing spin polarization can induce a transition to 
the helical phase with F order12. An alternative strategy utilized a 
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high-dielectric-constant substrate to screen the long-range part of 
the Coulomb interaction13. This enables the helical phase to emerge 
at moderate perpendicular magnetic fields, which eventually transits 
to a weak insulator on increasing the magnetic field. Furthermore, a 
KB order has been observed recently in graphene on graphite, which, 
however, cannot be assessed by transport experiments owing to the 
conductive graphite layer14. These observations suggest that a broad 
part of the phase diagram can be explored.

Here we unambiguously identify three broken-symmetry states in 
the zLL of graphene by directly visualizing their lattice-scale order with 
scanning tunnelling microscopy (STM) and spectroscopy22. To access 
the different broken-symmetry states, we used two different dielectric 
materials as substrate, both equipped with a back-gate electrode: the 
standard silicon oxide (SiO2) and the quantum paraelectric strontium 
titanium oxide (SrTiO3) with a remarkably high static dielectric constant 
ϵSTO ≈ 104 at low temperatures (Extended Data Fig. 1b). We fabricated 
samples consisting of monolayer graphene resting atop a thin hex-
agonal boron nitride (hBN) flake, deposited on the chosen substrate. 
To enable screening of the long-range Coulomb interaction13, we 
selected hBN flakes (Extended Data Table 1) with thickness less than or 
of the order of the magnetic length l ħ eB= /B  (where ħ is the reduced 
Planck constant and e is the electron charge) at low magnetic field, that 
is, the interelectron distance in the zLL. Figure 1d shows a schematic 
of the sample structure, where a metallic contact on the graphene 
serves to apply a voltage bias, Vb. All measurements were performed 
at 4.2 K.

Coulomb interaction screening
The Coulomb interaction strength can be readily assessed by tunnelling 
spectroscopy of the exchange gap that opens at half filling of the zLL14 
(Fig. 1a, b). Figure 2b shows a representative local tunnelling conduct-
ance spectrum, dIt/dVb versus Vb (where It is the tunnelling current), 
measured on sample STO07 under a perpendicular magnetic field of 
14 T. In this measurement, the Fermi level is adjusted at charge neutral-
ity, that is, at half filling of the zLL, by applying a back-gate voltage 
Vg = 13 V. Although all Landau levels with index |N| ≥ 1 appear in the tun-
nelling conductance as sharp peaks separated by the cyclotron gap scal-
ing as N B  (Supplementary Information), the zLL splits into two peaks 
revealing the Coulomb gap ΔE0, of the ν = 0 broken-symmetry state 
(where ν is the Landau level filling factor), akin to earlier experiments in 
gallium arsenide23. For accurate measurements of the gap, which reaches 
its maximum value at half-filling17, we measured the back-gate depend-
ence of the tunnelling conductance as shown in Fig. 2a. The Landau level 
peaks form a staircase pattern, indicating the successive pinning of the 
Fermi level within each highly degenerate Landau level24,25. The absence 
of Coulomb diamond features seen in previous studies indicates that 
our measurements are not affected by a tip-induced quantum dot26. 
Analysis of individual spectra around charge neutrality enables us to 
evaluate ΔE0, defined as the maximum separation between split peaks 
(red arrow in Fig. 2c, d). It is noted that tip-induced gating yields a neg-
ligible variation of filling factors of the order of 0.1 at the bias voltage of 
the split peaks (Supplementary Information).
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Fig. 1 | Landau level tunnelling spectroscopy in graphene. a, The 
non-interacting density of states of graphene under a perpendicular magnetic 
field. Each Landau level (LLN, where N is the Landau level index) is spin (↑, ↓) and 
valley (K, K′) degenerate, and emerges as a peak separated from others by 
cyclotron gaps. b, Owing to exchange interaction, the half-filled LL0 at charge 
neutrality splits into two peaks LL0±, thus opening an interaction-induced gap ΔE0. 
The resulting broken-symmetry state features an SU(4) polarization with a spin 
polarization s and a valley polarization n evolving in the SU(4) Bloch sphere 
constructed on the spin and valley subspaces. c, Schematics of the individual 
Bloch spheres of the spin and valley subspaces. d, Schematics of the  
graphene samples. The two different substrates used are either SiO2 

(unscreened configuration) or the high-dielectric-constant SrTiO3 (screened 
configuration). In both cases, graphene is biased with the voltage Vb through an 
ohmic contact (in yellow) and its charge carrier density is tuned by the voltage 
Vg applied to a back-gate electrode. The tunnelling current It is measured from 
the metallic tip. The tunnelling spectroscopy is performed under 
perpendicular magnetic field B. The white disks on the sample illustrate the 
Gaussian electronic wavefunction of LL0 that extends on the scale of the 
magnetic length lB. The left inset shows the graphene/hBN/substrate 
heterostructure, where dBN is the hBN thickness. The right inset shows a 
5 × 5 nm2 STM image of the graphene honeycomb lattice measured on sample 
STO07 at 4 K and at 0 T.
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Inspecting a systematic set of conductance maps for different 
magnetic field values, measured at various locations on the graphene 
surface, and on four different samples including SiO2 and SrTiO3 sub-
strates (Extended Data Table 1), provides a robust determination of the 
B dependence of the energy gap. Figure 2e shows the resulting values 
of ΔE0 as a function of the magnetic field.

We first focus on the unscreened case of sample AC04 (SiO2 substrate) 
with the blue data points in Fig. 2e. A clear B  dependence highlighted 
by the blue dashed line is observed starting at fields as low as 0.6 T and 
up to 14 T. This dependence reflects the growth of the Coulomb energy 
with B that scales as E e ϵ ϵ l B= /4π ∝C

2
0 r B , where ϵ0 and ϵr are the vac-

uum permittivity and the relative permittivity surrounding the gra-
phene, respectively. As the top graphene surface is exposed to vacuum, 
ϵr = (ϵBN + 1)/2 ≈ 2.3, where ϵBN ≈ 3.6 is the hBN relative permittivity. 
Theoretically, ΔE0 is expected to be 1/2 π/2 CE  (ref. 17). We plot this 
quantity in Fig. 2e (blue dashed curve) by adjusting ϵr to 2.6, which is 
consistent with the expected value for the relative permittivity. Such 
a quantitative agreement demonstrates the significance of our spec-
troscopy to assess the interaction-induced gap.

Remarkably, turning to the screened case with the SrTiO3 substrate 
yields gap values conspicuously smaller than those obtained on the 
sample on SiO2 (see red, orange and yellow data points in Fig. 2e). This 
demonstrates a clear screening of the Coulomb interaction by the high 
dielectric constant of the substrate. Electrostatic considerations that 
account for the thin hBN bottom layer lead to a substrate-screened 
Coulomb energy scale E E

∼ S B= × ( )C C  that is mitigated by a screening 
factor S B( ) ≈ 1 −
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, where dBN is the hBN thickness13.  

Consequently, electrons in graphene are subjected to an unusual 
B-dependent screening that depends on the ratio lB/dBN and is most 
efficient at low magnetic fields. In Fig. 2e, the red, orange and yellow 
dashed curves show EC

∼  calculated with the hBN thickness of the respec-
tive samples. Although the use of CE

∼  is strictly valid only for hBN-encap-
sulated graphene, we obtain a decent agreement with our data, despite 
some scattering for sample STO07.

Tunable lattice-scale orders
We now turn to the central result of this work, benchmarking the 
lattice-scale orders of the charge-neutral broken-symmetry state, upon 
tuning the screening of the Coulomb interaction. Figure 3 shows three STM 
images taken at the energy of a split zLL peak, on the SiO2 sample AC04 at 
B = 14 T (Fig. 3d), and on the SrTiO3 sample AC23 at B = 14 T (Fig. 3e) and 
B = 4 T (Fig. 3f). These panels thus cover three regimes for Coulomb inter-
action that we qualify as unscreened, moderately screened and screened, 
respectively. For the unscreened case in Fig. 3d, we observe a Kekulé distor-
tion bond-order pattern of the electronic wavefunction, consistent with an 
independent recent study27, indicating that spin-singlet pairs of electrons 
are localized on one bond out of three per carbon atom of the graphene 
honeycomb lattice. This order is stable down to B = 3 T (Fig. 4e). With the 
SrTiO3 substrates at high magnetic field, that is, under moderate screening, 
another lattice-scale order develops with a stark valley polarization: the 
CDW ground-state with the spin-singlet pairs now mostly localized on a 
single sublattice (Fig. 3e). This CDW order is found to be independent of 
the presence of a moiré superlattice formed with the hBN layer (Extended 
Data Figs. 8b, 9b). Finally, at low magnetic field (4 T in Fig. 3f), this CDW 
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Fig. 2 | Quantum Hall ferromagnetic gap at charge neutrality. a, Local 
tunnelling conductance gate map measured on graphene (Gr) sample STO07 
(SrTiO3 substrate) at B = 14 T. The staircase pattern shows the successive 
pinning of the Fermi level EF inside Landau levels. b, Tunnelling spectrum 
measured on the same sample at B = 14 T and Vg = 13 V, which corresponds to 
charge neutrality as indicated by the black arrow in a. With EF at half filling, the 
zLL splits into two peaks LL0± that define the gap ΔE0 of the broken-symmetry 
state. c, Zoom of the white rectangle in a showing the splitting of the LL0.  
d, Spectra extracted from c at the back-gate voltages indicated on the right of 

each curve. e, Evolution of ΔE0 as a function of magnetic field for the four 
studied samples. For sample AC04 (SiO2 substrate), the gap is fitted by the 
Coulomb energy E B1/2 π/2 ∝C , shown as a dashed blue line. For the three 
samples with SrTiO3 substrates, ΔE0 is decreased compared with sample AC04 
owing to the substrate screening of the Coulomb interaction. The red, orange 
and yellow dashed lines correspond to the substrate-screened Coulomb 
energy 1/2 π/2 CE

∼ , calculated with the respective hBN thickness of the 
samples.
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order disappears, revealing a valley-unpolarized graphene honeycomb 
lattice, which points to a spin order, that is, the F or CAF orders.

Kekulé bond order
Going further, we show that additional fine structures emerge at the 
lattice scale, enriching the predicted phase diagram. The KB order 

features an unexpected, faint CDW that has the periodicity of the Kekulé 
unit cell. This coexisting order is readily seen in Fig. 4a: a nicely formed 
Kekulé pattern shows an enhanced local wavefunction amplitude inside 
one hexagon of the honeycomb that repeats periodically on the Kekulé 
triangular lattice, as indicated by the blue circles and dashed lines in 
Fig. 4b. Figure 4c provides a representation of the latter superimposed 
on the honeycomb and Kekulé lattices. This CDW, which we label as 
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Fig. 3 | Tunable broken-symmetry states of charge-neutral graphene.  
a–c, Lattice-scale order drawings of the four possible broken-symmetry states 
in charge-neutral graphene under a perpendicular magnetic field. a, The KB 
order. b, The CDW with sublattice polarization. c, The spin-polarized F and CAF 
ground states. d–f, Three 2.6 × 2.6 nm2 STM images taken in constant height 
mode. d, STM image on sample AC04 (unscreened graphene) at B = 14 T and 
Vb = 25 mV, which unveils a KB order. e, At B = 14 T (weakly screened graphene, 

lB = 7 nm < dBN = 12 nm) and Vb = 40 mV, the sample AC23 shows a sublattice 
CDW. f, At B = 4 T (screened graphene, lB = 13 nm ≈ dBN = 12 nm) and Vb = 20 mV, 
we find a valley-unpolarized phase consistent with the spin-polarized helical 
phase. For each image, we superposed a corresponding lattice drawing 
emphasizing the bond order, the sublattice polarization and the honeycomb 
lattice, respectively. The black horizontal arrow indicates the strength of 
substrate screening.
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Fig. 4 | KB order in unscreened charge-neutral graphene. a, A 5 × 5 nm2 STM 
image on sample AC04, at B = 14 T and Vb = 25 mV. The KB lattice, where both 
electrons of the broken-symmetry state are localized on one C–C bond out of 
three, is shown in overlay with the stronger bonds highlighted in thick white.  
b, A zoom of a, where we observe a secondary CDW order featuring a triangular 
lattice (drawn in blue) with a parameter matching the one of the Kekulé lattice 
( 3  times the graphene lattice parameter). c, The structure of the KB lattice, 
where the basis vectors of the KB order lattice are indicated in red. d, e, Two 

3 × 3 nm2 images showing asymmetric Kekulé patterns. d, At B = 14 T and 
Vb = 2 mV, the three Kekulé strong bonds are partially merged. e, At B = 3 T and 
Vb = 30 mV, three Kekulé strong bonds are completely merged and form a 
circle-like pattern. f, g, Two 3 × 3 nm2 images at B = 14 T and Vb = 25 meV acquired 
at the same position a few minutes apart, showing the transition between two 
degenerate Kekulé configurations from the red Kekulé lattice in f, to the white 
one in g. Both lattices in overlay are at the same position.
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K-CDW, is different from the CDW broken-symmetry state as it shows a 
triangular lattice with a parameter 3 -times larger than the graphene 
lattice parameter. The tripled unit cell of the K-CDW is reminiscent of 
CDW phases observed to compete with the Kekulé order in extended 
Hubbard models28,29 at B = 0, but have not been reported or predicted 
at finite B. We also observed other situations in which this K-CDW induces 
a pronounced asymmetry of the Kekulé pattern, with a more or less merg-
ing of the Kekulé strong bonds (Extended Data Figs. 2, 3). This is illus-
trated by the evolution from the mostly symmetric Kekulé lattice shown 
in Fig. 4a to the asymmetric Kekulé lattices shown in Fig. 4d, e. If on some 
images the strong bonds are still visible (Fig. 4d), they can also merge 
with each other, forming a circle-like pattern seen in Fig. 4e.

Interestingly, both the KB order and K-CDW vary with time. For 
instance, Fig. 4f, g shows a spontaneous transition from one of the 
three possible degenerate Kekulé lattices to another, while continu-
ously imaging the same location. Similar changes for the K-CDW are 
shown in Extended Data Figs. 4, 5.

CDW order
In screened graphene, likewise, close inspection of the CDW 
broken-symmetry state reveals striking fine structures. Here we assume 
that the electron doublets of the CDW are localized on the sublattice 
A (in blue), whereas the sublattice B is empty (in red), as in the inset of 
Fig. 5a. We start by deciphering Fig. 5b, c, taken at the same location, 
and comparing the occupied and empty orbitals of the same atoms. 
In both images, the CDW appears as dark spots featuring a triangular 
symmetry and corresponding to the atoms of a single sublattice (the 
sublattice B in Fig. 5b and the sublattice A in Fig. 5c), whereas atoms 
of the other sublattice are not visible. Extracting electrons from the 
occupied states into the STM tip at negative sample bias leads to a 

low tunnelling current on the empty atoms of the sublattice B (dark 
spots in Fig. 5b). Similarly, injecting electrons from the STM tip into 
the empty states at positive sample bias leads to a low current on the 
already doubly occupied atoms of the sublattice A (dark spots in Fig. 5c).

In addition, inspecting Fig. 5c, we see that atoms of sublattice B (red 
spots in the inset) are located in the middle of a triangular lattice formed 
by bright lines joining the doubly occupied atoms of the sublattice A, 
which correspond to a high density of empty states. One can also notice 
in Fig. 5c that the triangular cells that contain atoms B are brighter than 
the other empty cells, which is consistent with the enhancement of the 
local density of empty states by the B atoms. We illustrate this unusual 
sublattice inversion with the lattice drawings in Fig. 5g, h, where the 
density of occupied and empty states are colour-coded blue and red, 
respectively. Figure 5i summarizes this remarkable inverted pattern by 
superposing the empty (red) and occupied (blue) states on the same 
carbon hexagon.

This additional triangular order that accompanies the CDW in Fig. 5 
was not expected by theory10. Such a sublattice bond asymmetry, t2,A ≠ t2,B 
(where, t2,A and t2,B are the second-nearest-neighbour bond expectation 
values of sublattices A and B, respectively), is generically permitted in 
the CDW phase as it gaps out the zLL with the same matrix structure as 
a sublattice charge imbalance30 (Methods and Extended Data Figs. 6, 7).  
It becomes visible when the sublattice degree of freedom is partially 
polarized (Fig. 5e, f). We conjecture that this partial sublattice polariza-
tion could originate from Landau level mixing, as the sublattice index is 
decoupled from the valley index in higher Landau levels31–33.

Implications for transport experiments
The observation of these three ground states has profound implications 
for the understanding of transport properties at charge neutrality. For 
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in b is inverted with respect to that in c, as the tunnelling current is negative due 
to the negative bias. d, At Vb = 100 mV, the CDW is no longer visible and the 
honeycomb lattice appears instead. e, A CDW with full sublattice polarization, 
as predicted in ref. 10, compared with a CDW with partial sublattice polarization 
in f. The symmetry-allowed triangular bond order is suppressed in e, and 
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and positive bias (h). i, Structure of the intra-sublattice bonds.



56 | Nature | Vol 605 | 5 May 2022

Article
the unscreened case, corresponding to virtually all transport experi-
ments, the KB order contradicts the transition scenario from the con-
jectured CAF phase to the helical F phase tuned by the Zeeman field10,12, 
as well as recent magnon transmission experiments34–37 that imply mag-
netism. Nonetheless, a recent prediction33 suggests that both KB order 
and CAF phases could coexist, thus accounting for the experimental 
dissonance. Our observation of a subdominant K-CDW order adds yet 
another flavour to the phase diagram, which was not anticipated thus 
far and deserves further theoretical attention. Similarly, the nature 
of edge excitations may be more complex than initially thought38. A 
definitive conclusion on the existence of an underlying magnetism in 
this ground state and its possible spin texture at the lattice scale (Fig. 3c) 
would require further spin-filtered scanning tunnelling experiments.

Furthermore, our observation of coexisting orders implies that the 
nature of bulk excitations in this insulating phase must be revisited39. 
The time-varying nature of the KB order and K-CDW, indicating some 
depinning mechanisms and the presence of domain walls, may contrib-
ute to charge transport, in parallel to skyrmion excitations. A Koster-
litz–Thouless phase transition driven by topological Kekulé-vortex 
zero modes40 has been predicted41 and discussed experimentally15,16.

In the screened case, we observed the CDW persisting from B = 14 T 
to B = 7 T (Extended Data Fig. 8) and disappearing at B = 4 T in favour 
of a valley-unpolarized phase at lower magnetic field. This phase tran-
sition is consistent with the spin-polarized helical phase observed in 
transport measurements13, which is replaced by a weakly insulating 
phase at high fields, corresponding to the CDW phase found in this 
work. The scenario explaining the change of ground state owing to 
substrate screening was accounted for by a modification of renor-
malization effects of the valley-anisotropy energies by the (screened) 
long-range Coulomb interaction13. Although it is difficult to assess 
this renormalization experimentally, the substrate screening of the 
Coulomb interaction evidenced by our spectroscopy of the zLL gap 
indicates that such a mechanism is likely to be at play. As the screen-
ing exhibits an inversely proportional B dependence, our findings, 
supported by transport experiments, confirm a modification of the 
valley-anisotropy energies on varying the magnetic field in this specific 
substrate-screened configuration.

Ultimately, at much higher fields such that lB ≪ dBN, one should expect 
in graphene samples on SrTiO3 another transition from the CDW to the 
KB phase. In this situation, the substrate screening vanishes and the 
Coulomb energy scale asymptotically reaches its bare value.
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Methods

Sample fabrication
Graphene/hBN heterostructures were assembled from exfoliated flakes 
with the van der Waals pick-up technique using a polypropylene car-
bonate polymer42. Stacks were deposited using the methods described 
in ref. 43 (for sample STO07) or in ref. 44 (for samples AC04, AC23 and 
AC24), on either highly doped Si wafers with a 285-nm-thick SiO2 layer, 
or 500-μm-thick SrTiO3 [100] substrates cleaned with hydrofluoric 
acid buffer solution before deposition of the graphene/hBN hetero-
structures (a titanium/gold bilayer was deposited later on the other 
side of the SrTiO3 substrate to enable the back-gate effect). The geo-
metrical parameters of the samples are listed in Extended Data Table 1. 
Electron-beam lithography using a polymethyl methacrylate resist was 
used to pattern a guiding markerfield on the whole 5 × 5 mm2 substrate 
to drive the STM tip towards the device. Chromium/gold electrodes 
contacting the graphene flake were also patterned by electron-beam 
lithography and metalized by e-gun evaporation. Samples were ther-
mally annealed at 350 °C in vacuum under an halogen lamp to remove 
resist residues and clean graphene, before being mounted into the STM 
where they were heated in situ during the cooling to 4.2 K.

Measurements
Experiments were performed with a home-made hybrid STM and 
atomic force microscope (AFM) operating at a temperature of 4.2 K 
in magnetic fields up to 14 T. The AFM mode is used to guide the tip 
towards the graphene device. The sensor consists of a hand-cut plati-
num–iridium tip glued on the free prong of a tuning fork, the other 
prong being glued on a Macor plate. Once mounted inside the STM, the 
tip is roughly aligned over the sample at room temperature and then 
guided towards the graphene in AFM mode at low temperature using 
the guiding markerfield. Scanning tunnelling spectroscopy was per-
formed using a lock-in amplifier technique with a modulation frequency 
of 263 Hz and a root-mean-square modulation voltage between 1 mV 
and 5 mV depending on the spectral range of interest. Imaging of the 
zLL lattice-scale orders was carried out in STM constant-height mode. 
Starting from a tunnelling contact at Vb = 300 mV and It = 1 nA with the 
Z-regulation on, we switch off the regulation and lower the bias voltage 
to either energies corresponding to the LL0± peaks, which drastically 
decreases the tunnelling current. We then manually approach the tip 
towards the graphene until the recovery of a tunnelling current of a few 
nanoamperes. STM images of the tunnelling current measured while 
scanning at a constant tip–sample distance subsequently yield atomi-
cally resolved images of the honeycomb lattice or lattice-scale orders.

Dielectric constant of SrTiO3 in magnetic field
We show here how to estimate the SrTiO3 dielectric constant, ϵSTO, 
from tunnelling conductance gate maps. ϵSTO is related to the global 
dielectric constant of the back gate, ϵr, which can be obtained by 
modelling the back-gate capacitance Cg as the sum of the series 
capacitances of SrTiO3 and hBN assuming plane capacitors : 
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ically, ϵBN ≈ 3.6 and ϵSTO ≈ 104 at low temperature45, so that 
dBNϵSTO/dSTOϵBN ≈ 0.1. We can thus assume that ϵr ≈ ϵSTO.

To estimate ϵr as a function of the back-gate voltage, Vg, we consider 
the tunnelling conductance gate map of Fig. 2a (sample STO07) from 
which we can extract some values of the back-gate voltage at specific 
filling factors ν. Note that the electron–hole asymmetry visible in this 
gate map stems from the nonlinear behaviour of ϵSTO with gate volt-
age13,46–48. In Extended Data Fig. 1a, we plot the line cut of the gate map 
at zero bias, averaged on a range of ±20 meV around this value. We 
clearly observe the different non-zero conductance plateaus forming 
when the Fermi energy EF is pinned inside one LL, with gaps in-between. 

As the gate voltages at the middle of those gaps correspond to com-
pletely filled and empty LLs, we identify the positions in gate voltage 
of the integer filling factors ν = −10, ν = −6, ν = −2 and ν = 2. These values 
are converted into charge carrier density values n in Extended Data 
Fig. 1b using ν = nϕ0/B with ϕ0 = h/e the flux quantum and n the charge 
carrier density. A polynomial of degree five fits and interpolates the 
evolution of n with Vg. From this fit, charge neutrality point (CNP) at 
n = 0 is achieved at the back-gate voltage V CNP = 13.5 V. We then straight-
forwardly obtain the Vg dependence of ϵr via ϵ =

d
ϵ

en

V Vr −

STO

0 g
CNP

The red curve in Extended Data Fig. 1b shows the resulting ϵr, which 
decreases with increasing gate voltage and ranges between 12,500 and 
3,500. A similar ϵr(Vg) profile but with slightly weaker values is obtained 
for sample AC23 (3,000 < ϵr < 11,500). Finally, using the fit of the fill-
ing factor ν, we can rescale the gate map as a function of ν as shown 
in Extended Data Fig. 1c. In particular, it is noted that in the rescaled 
map the interaction-induced gap is maximal at charge neutrality ν = 0, 
as expected considering that the exchange interaction is maximal at 
half-filling of the zLL.

Asymmetry of the KB pattern
In Extended Data Fig. 2a, we show an STM image of an asymmetric KB pat-
tern. Extended Data Fig. 2b shows the corresponding two-dimensional 
Fourier transform (2D-FT). The 2D-FT is mainly composed of three hexa-
gons, defined by the yellow, red and blue encircled peaks. To decipher 
the 2D-FT, we filter the STM image by considering certain peaks only. 
The yellow peaks alone yield the usual honeycomb lattice in Extended 
Data Fig. 2c. The red peaks give the image shown in Extended Data 
Fig. 2d, which features a triangular lattice. When we superimpose the 
KB lattice drawing, we notice that each bright point of the triangular 
lattice in Extended Data Fig. 2d falls either on the strong white bonds 
of the Kekulé lattice or at the centre of the hexagons devoid of strong 
bond: the addition of both images yields the bond-density wave shown 
in Extended Data Fig. 2e where we have filtered the STM image by con-
sidering this time both yellow and red peaks and mostly recovered 
the original KB pattern. This also justifies why the hexagon devoid of 
strong bond in the KB pattern appears brighter than the neighbouring 
hexagons composed of three strong bonds, similarly visible in Fig. 4a. 
Note that the presence of two red peaks with halved amplitude in one 
direction is responsible of the slight asymmetry that is already visible 
in Extended Data Fig. 2e.

In Extended Data Fig. 2f, we show the image obtained after filtering 
using only the blue peaks. We observe a strongly asymmetric triangu-
lar lattice encoding the Kekulé spatial modulation at 3  times the 
graphene lattice parameter. The asymmetry arises from a large asym-
metry between the blue peaks in the 2D-FT, where two peaks in one 
direction are twice as high as the others. This yields dissimilar weights 
to the bond-density wave, as shown in Extended Data Fig. 2g where we 
have filtered considering red and blue peaks, and explains the strong 
asymmetry we observe in the KB pattern, which is fully recovered in 
Extended Data Fig. 2h where we have filtered with the yellow, red and 
blue peaks. We conjecture that this strong asymmetry of the 2D-FT 
originates from the existence of the K-CDW order whose contribution 
is visible in Extended Data Fig. 2f, as in the symmetric KB pattern (where 
this K-CDW order is not visible) there is no such asymmetry between 
the blue and red peaks.

Bias dependence of the KB order
In Extended Data Fig. 3, we show constant-height-mode STM images 
where we have changed the sample bias Vb during scanning. The red 
and blue arrows on the right of each image show the direction of the 
slow-scan axis, and their colour corresponds to the actual sample bias, 
which is indicated in the bottom panels. In Extended Data Fig. 3a, we 
clearly observe a contrast inversion when switching the sample bias 
from LL0+ to LL0−, with the continuity of the KB pattern at the interface. In 
Extended Data Fig. 3b, we see the transition from the usual honeycomb 



Article
lattice to the KB pattern when switching the sample bias from LL1 to LL0+.  
This indicates that both the KB order and the underlying K-CDW disap-
pear when the bias voltage is away from the zLL peaks, which rules out 
a tip-induced artefact as the origin of the observed KB order.

K-CDW configuration change
We illustrate here the time-varying nature of the K-CDW. In Extended 
Data Fig. 4, we show three successive images acquired in a row at the 
same position and Vb = 2 mV. The vertical arrow on the left of each image 
indicates the direction of the slow-scan axis. Figure 4d belongs to the 
same set of image acquisition. In Extended Data Fig. 4a, the lattice 
in overlay describes the asymmetric KB pattern, with the white links 
being the strong bonds of the KB order, whereas the asymmetry that 
comes from the K-CDW order makes the hexagons with blue weak bonds 
brighter than the hexagons with red weak bonds. The next image in 
Extended Data Fig. 4b (duration of each image, 53 s) starts from the 
bottom, where we observe the same KB pattern. However, a jump occurs 
at the line indicated by the red arrows, and, after that, in the top part 
of the image, the asymmetry of the KB pattern is reversed. Using the 
lattice in overlay as a guide for the eye, we see that the red hexagons 
are brighter (owing to the three strong white bonds almost merging 
together), such that the new pattern is the mirror of the previous one. 
Eventually, the next image in Extended Data Fig. 4c shows this new 
pattern with brighter red hexagons on the whole area, and the next 
images we realized during several minutes happened to be identical. 
This indicates that the K-CDW order transited and reversed the asym-
metry of the KB phase. It is noted that the pattern of the strong white 
bonds, which defines the KB order, stays unchanged in the three images 
(in opposition to the KB order transition shown in Fig. 4f, g).

The asymmetry reversal of the KB order owing to the K-CDW transi-
tion is well seen in the 2D-FT of both images in Extended Data Fig. 4a, c 
(top insets). For Extended Data Fig. 4a, the K-CDW appears in the inner 
hexagon, where the two peaks encircled in green are twice as bright 
as the other four peaks. On the contrary, for Extended Data Fig. 4c, it 
is now the yellow peaks that are brighter than the other four, with the 
amplitude of the green peaks lowered. The change of the direction of 
the two brighter peaks induces the change of the asymmetry pattern of 
the KB order. Interestingly, the outermost hexagon, which corresponds 
to the bond-density wave, also features a change in the intensity of its 
peaks: in Extended Data Fig. 4a, the blue peaks are halved in amplitude 
whereas in Extended Data Fig. 4c the red peaks are halved. This does 
not yield any notable change of the KB pattern but this may mean that 
the bond-density wave and the K-CDW are entangled.

Therefore, the asymmetry of the KB patterns we observed depends on 
the K-CDW order and its fluctuations. Moreover, Extended Data Fig. 4b 
shows an image in which the K-CDW switched from that of Extended 
Data Fig. 4a to that of Extended Data Fig. 4c during the acquisition. 
This change that occurred during the scan indicates that the K-CDW 
switches instantaneously on the timescale of the scan speed. This can 
also indicate either a change of the K-CDW on the entire sample in case 
of a homogeneous K-CDW, or the displacement of domains with differ-
ent K-CDW configurations separated by domain walls. It is noted that 
this concerns only this anomalous K-CDW, which coexists with the KB 
order, the latter being unchanged in the three images (the bright bonds 
pattern remains the same).

Such transitions of the K-CDW happened a few times during our 
measurements. In Extended Data Fig. 5a, we show a 10 × 10 nm2 image 
of an asymmetric KB pattern with the circle-like pattern formed by the 
merging of the strong bonds inside one hexagon of the KB order unit 
cell. Imaging the same area a few minutes later in Extended Data Fig. 5b 
unveils a spontaneous change of K-CDW configuration, similar to that 
in Extended Data Fig. 4b, which occurred during scanning on the line 
indicated by the red arrows: in the top part, the three strong bonds 
merge together inside another hexagon of the KB order unit cell with 
respect to the bottom part (see the white dashed line that intercepts 

the circles in the top part of the image and, conversely, passes between 
the circles in the bottom part). As previously, the KB order lattice itself 
does not change.

We point out that we cannot exclude a K-CDW configuration change 
induced by the action of the scanning tip. Still, such a tip-induced 
change also implies that the K-CDW is not pinned and can be subject 
to fluctuations. 

Induced t2 asymmetry in the CDW state
We discuss here how a second-nearest-neighbour hopping asymmetry 
gaps the zLL of graphene. We consider the spinor ψ =  (ψAK, ψBK, ψAK′, ψBK′), 
where ψστ is a zLL single-particle wavefunction in sublattice σ and val-
ley τ. In this basis, both the sublattice imbalance Δn = nA − nB and the 
second-nearest-neighbour hopping asymmetry Δt2 = t2A − t2B (Extended 
Data Fig. 6) enter the low-energy Hamiltonian close to the Dirac point 
with the matrix τ0 ⊗ σz in valley (τ) and sublattice space (σ). This matrix 
structure implies that both perturbations gap out the K and K′ points 
of graphene, with a gap given by30:

E n t= Δ +
3
2

Δ , (1)g 2

which is of equal sign for both valleys. We can visualize the effect of 
Δt2 and Δn on the zLL by diagonalizing the graphene Hamiltonian in 
the presence of a magnetic field. The spectrum with Δt2 ≠ 0 and Δn ≠ 0 
are shown in Extended Data Fig. 6a, b, respectively, obtained with the 
kwant package49. We can confirm numerically that the gap is given by 
equation (1) and that when n tΔ = − Δ3

2 2  the gap closes, confirming  
that both perturbations enter the Hamiltonian with the same matrix  
structure.

The above argument suggests that interactions that induce a finite Δn 
will generically induce a finite Δt2 ≠ 0, as they both enter with the same 
matrix structure. To exemplify this generic behaviour, we use the Hamil-
tonian of graphene in the presence of nearest-neighbour interactions V1:

∑ ∑H t c c V n n= − ( + h . c.) + , (2)
ij

i j
ij

i j
†

1

where the sums are taken over nearest neighbours of the honeycomb 
lattice. Here c†

i and ci are the creation and annihilation operators, 
respectively, acting on site i of the honeycomb lattice, and h.c. denotes 
Hermitian conjugate. It is noted in particular that the second-nearest- 
neighbour hopping is explicitly zero in the Hamiltonian. In the limit of 
infinitely large interaction, the ground state of H at half-filling is a CDW 
with one fully occupied and one fully empty sublattice, a state charac-
terized by Δn = 1. The bond asymmetry Δt2 is expected to be exactly 
zero in this limit, as all sites on one sublattice are completely full and 
thus no states are available to hop to. Similarly, all sites on the other 
sublattice are completely empty such that no states are available to 
hop from. At sufficiently large (but finite) V1/t, the ground state is a 
CDW with partial sublattice imbalance, as we numerically show in 
Extended Data Fig. 7. In Extended Data Fig. 7a, we show the expectation 
value Δn c c c c= −i i i iA

†
A B

†
B , where ciτ and ciτ

†  act on unit cell i of sublattice τ, 
in the ground state of H for different V1 obtained by using the infinite 
density matrix renormalization group, implemented using the tenpy 
package50, as explained in ref. 28. For small interactions, Δn is close to 
zero, and grows continuously to one as V1 is increased28, signalling a 
second-order phase transition (see, for example, ref. 28 for a discussion). 
As shown in Extended Data Fig.  7b, we observe a concomitant 
second-nearest-neighbour bond asymmetry, defined as tΔ =2

c c c cRe[ − ]i i i iA
†

+1A B
†

+1B , that develops at intermediate values of V1, as 
expected on the basis of our previous symmetry discussion. As V1 
increases, Δt2 increases until reaching a maximum, and then decreases 
as V1 becomes larger, for all cylinder circumferences Ly = 6, Ly = 8 and 
Ly = 10. It is possible to check numerically that setting t = 0 in 



equation (2), that is, in the limit V1/t → ∞, leads to Δt2 = 0 and Δn = 1, as 
discussed above.

The above results support that a CDW order with a partial sublat-
tice imbalance, that is, 0 < Δn < 1, is generically accompanied by a 
second-nearest-neighbour bond asymmetry, Δt2 ≠ 0, as argued in the 
main text.

In the zLL of graphene, the wavefunctions at each valley live in differ-
ent sublattices and thus a full valley polarization implies a full sublattice 
polarization Δn = 1, in which case Δt2 = 0. When the sublattice polariza-
tion is not maximal then a finite Δn and Δt2 are expected, consistent 
with what is observed in experiment (Fig. 5). As mentioned in the main 
text, this effect can originate from Landau level mixing as the sublattice 
index is not locked to the valley index beyond the zLL31–33.

Influence of the moiré superlattice on the CDW phase
The sample AC23 shows a weak moiré superlattice (weak in the sense 
that is not always visible in our images). This raises the question of 
whether the CDW phase we observed was induced by the moiré pattern, 
which could also break the sublattice symmetry, or not. In such case, 
we may expect the CDW pattern to rely on that of the moiré pattern, 
with the sublattice polarization depending on the position inside the 
moiré superlattice (owing to the periodic potential it induces in gra-
phene). Extended Data Fig. 8b shows a CDW phase observed at B = 7 T. 
The moiré pattern is barely visible but appears as bright spots, such as 
the ones indicated by dashed white circles. The CDW pattern itself is 
homogeneous over the whole moiré lattice.

STM images of the similar sample AC24 on SrTiO3 did not show any moiré 
superlattice. Still, in the same conditions, at charge neutrality, we observed 
signatures of a CDW phase, shown in Extended Data Fig. 9b, which indicates 
that the CDW we observe in our hBN/SrTiO3 samples is indeed an intrinsic 
consequence of many-body interactions at charge neutrality and not due 
to extrinsic substrate-induced sublattice symmetry breaking.

Disappearance of the CDW order at low magnetic field
Extended Data Fig. 8a, b shows that the CDW persists at B = 9 T and 
B = 7 T on sample AC23. However, Extended Data Fig. 8c–e at B = 4 T does 
not show the CDW anymore but only the usual sublattice-unpolarized 
honeycomb lattice.

Finally, it is theoretically expected10 that graphene undergoes a 
first-order phase transition from the CDW to the F phase. Such a tran-
sition should induce the formation of domains in graphene with the 
coexistence of both phases around the magnetic field at which the 
transition occurs. When taking a closer look at Extended Data Fig. 8e 
taken at B = 4 T (see its zoom in Extended Data Fig. 8f), one can discern 
some bright dots in some parts of the image (see the blue circles). This 

residual asymmetry of the honeycomb lattice is reminiscent of the 
CDW. It is possible that it may constitute a signature of such domains 
around the transition between the CDW and F phases.

Data availability
All data described here are available at Zenodo51.
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Extended Data Fig. 1 | Estimation of the dielectric constant of SrTiO3 and 
rescaling of the gate map. a, Line cut at Vb = 0 V, averaged on a range of 
±20 mV, of the dIt/dVb gate map in Fig. 2a. b, Estimation from the filling factors 
obtained in a of the charge carrier density n (blue dots), its polynomial fit (blue 

curve), and computed values of ϵr ≃ ϵSTO (red curve), as a function of gate 
voltage. The fit yields VCNP ≃ 13.5 V. c, Rescaling of the gate map of Fig. 2a as a 
function of ν.



Extended Data Fig. 2 | 2D-FT decomposition of the asymmetric Kekulé 
distortion. a, 3 × 3 nm2 image showing an asymmetric KB pattern, measured at 
B = 14 T and Vb = 2 mV. b, 2D Fourier transform (2D-FT) of the STM image in a. 
Yellow circles indicate peaks of the honeycomb lattice, red and blue circles 
indicate peaks of the bond-density wave. c–h, 1.53 × 3 nm2 Filtered images 

obtained by considering certain peaks of the FFT as indicated in the top right 
corner of each panel. The Kekulé lattice is drawn in white for reference. The KB 
order is mostly retrieved by considering only the yellow and red peaks. The 
asymmetry of the KB pattern is encoded in the blue peaks whose two of them 
are twice as high as the others due to the K-CDW order. Scale bar is 500 pm.
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Extended Data Fig. 3 | Contrast inversion and emergence of the Kekulé 
bond order. 3 × 3 nm2 STM images during which we changed the bias voltage as 
shown in the bottom insets (the current color bars are tuned separately for 
each half of the images). a, We start (bottom) at Vb = 32 mV (LL0+) and switch 
(top) to Vb = −12 mV (LL0−) to observe a contrast inversion of the KB lattice. b, We 
start (top) at Vb = 200 mV (LL1) and switch (bottom) to Vb = 20 mV (LL0+) and 
observe the emergence of the KB order from the honeycomb lattice. Scale bars 
for both images are 500 pm.



Extended Data Fig. 4 | Asymmetry reversal of the Kekulé pattern. 3 × 3 nm2 
STM images measured at B = 14 T, Vb = 2 mV and at the same position. The three 
images were measured successively (scanning time : 1 min). A jump occurs in b 
at the scan line indicated by the red arrows, leading to an inversion of the 

asymmetry of the Kekulé pattern. The slow scan axis direction is indicated by 
the blue arrows on the left of each image. Scale bars for the three images are 
500 pm.
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Extended Data Fig. 5 | Change of the Kekulé asymmetry. 10 × 10 nm2 STM images measured at B = 14 T and Vb = 25 mV. In b, the asymmetry pattern changes at the 
scan line indicated by the red arrows. Scale bars for both images are 1 nm.



Extended Data Fig. 6 | Effect of sublattice charge imbalance and a t2 
asymmetry on the zeroth Landau level. a shows that the effect of a finite 
charge imbalance Δn = nA − nB is to gap the zeroth Landau level of graphene. b 
shows that a hoping asymmetry Δt2 = t2,A − t2,B also opens up a gap, that depends 
on momentum k as we move away from the K and K′ points. The parameters are 

chosen so that Eg is the same on both plots at the K and K′ points, according to 
Equation (1). Simulations were performed using the kwant software49 for a 
41 × 41 hexagonal lattice with ϕ = 0.003 flux per plaquette, in units of the flux 
quantum. Energies are measured in units of the nearest-neighbor hopping t. 
For a, Δt2 = 0 and Δn = 0.045, while for b, Δt2 = 0.015 and Δn = 0.
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Extended Data Fig. 7 | Induced Δt2 asymmetry by interactions. a shows that 
a sublattice charge imbalance Δn = ⟨nA − nB⟩ ≠ 0 develops as V1 increases. b 
shows the concomitant emergence of a second nearest-neighbor bond 

asymmetry Δt2 = ⟨t2A − t2B⟩ ≠ 0, peaking at intermediate values of V1. The 
simulations are carried out for cylinder circumferences of Ly = 6, 8, 10 sites, all 
with bond-dimension χ = 1000, using the tenpy package50.



Extended Data Fig. 8 | Disappearance of the charge-density wave at low 
magnetic field in sample AC23. a, CDW at B = 9 T. b, CDW at B = 7 T. The Moiré 
superlattice is visible but does not perturb the CDW pattern. c, d, Honeycomb 

lattice with no CDW at B = 4 T. e, Honeycomb lattice at B = 4 T with residual 
traces of CDW, see the zoom in f of the white rectangle. Scale bars for all figures 
are 500 pm.
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Extended Data Fig. 9 | Charge-density-wave order in sample AC24.  
a, Honeycomb lattice at B = 14 T and Vb = −350 mV observed at ν = 0. b, CDW under 
the same conditions but at Vb = −18 mV. Scale bars for both figures are 500 pm.



Extended Data Table 1 | Geometrical parameters of the four 
measured samples
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